Zipline Deploys Medical Delivery Drones with U.S. Military

We usually don’t toss around the word “disrupting” in a technology context without some serious eye roll. But Zipline really has been disrupting medical supply delivery in Africa by using drones to bypass busy roads and hilly terrain to deliver medical supplies to hospitals and clinics in minutes rather than hours. We visited Zipline in Rwanda last year, and the system it has for delivering blood, blood products, and medication is versatile, reliable, and even (in some cases) more affordable than any other delivery method available.  It’s not at all surprising that the unique capabilities Zipline offers have caught the attention of the U.S. military, which (at least in terms of personnel ratios) is primarily a massive logistics and support organization and secondarily a fighting force. For the past year or so, the Defense Department’s Defense Innovation Unit (DIU) has been working with Zipline to evaluate how their technology could be used Continue reading Zipline Deploys Medical Delivery Drones with U.S. Military

Pushy robots learn the fundamentals of object manipulation

MIT researchers have compiled a dataset that captures the detailed behavior of a robotic system physically pushing hundreds of different objects. Using the dataset — the largest and most diverse of its kind — researchers can train robots to “learn” pushing dynamics that are fundamental to many complex object-manipulation tasks, including reorienting and inspecting objects, and uncluttering scenes. To capture the data, the researchers designed an automated system consisting of an industrial robotic arm with precise control, a 3D motion-tracking system, depth and traditional cameras, and software that stitches everything together. The arm pushes around modular objects that can be adjusted for weight, shape, and mass distribution. For each push, the system captures how those characteristics affect the robot’s push. The dataset, called “Omnipush,” contains 250 different pushes of 250 objects, totaling roughly 62,500 unique pushes. It’s already being used by researchers to, for instance, build models that help robots Continue reading Pushy robots learn the fundamentals of object manipulation