Zipline Deploys Medical Delivery Drones with U.S. Military

We usually don’t toss around the word “disrupting” in a technology context without some serious eye roll. But Zipline really has been disrupting medical supply delivery in Africa by using drones to bypass busy roads and hilly terrain to deliver medical supplies to hospitals and clinics in minutes rather than hours. We visited Zipline in Rwanda last year, and the system it has for delivering blood, blood products, and medication is versatile, reliable, and even (in some cases) more affordable than any other delivery method available.  It’s not at all surprising that the unique capabilities Zipline offers have caught the attention of the U.S. military, which (at least in terms of personnel ratios) is primarily a massive logistics and support organization and secondarily a fighting force. For the past year or so, the Defense Department’s Defense Innovation Unit (DIU) has been working with Zipline to evaluate how their technology could be used Continue reading Zipline Deploys Medical Delivery Drones with U.S. Military

UAV-Based LiDAR Can Measure Shallow Water Depth

World’s first small-scale topographic and bathymetric scanning LiDAR ASTRALiTe’s edge™ is the world’s first small-scale topographic and bathymetric scanning LiDAR that can detect small underwater objects, measure shallow water depth, and survey critical underwater infrastructure from a small UAV platform. The edge™ can see beneath the water surface at depths from 0-5 meters and is completely self-contained with its own Inertial Navigation System with GNSS, battery, and onboard computer. It weighs about 5 kg and is designed for deployment on UAV systems for faster, safer, and more accurate bathymetric surveys. This patented 2-in-1 topographic and bathymetric LiDAR offers a centimeter-level depth resolution. There are numerous possible applications for this LiDAR, such as coastal mapping and surveying, infrastructure inspection, or even military logistics.  Importance of geo-referencing and motion stabilization “We needed a motion and navigation solution for our LiDAR. Our requirements included high accuracy along with low size, weight, and power” Continue reading UAV-Based LiDAR Can Measure Shallow Water Depth

Skydio’s Dock in a Box Enables Long-Term Autonomy for Drone Applications

The word “autonomy” in the context of drones (or really any other robot) can mean a whole bunch of different things. Skydio’s newest drone, which you can read lots more about here, is probably the most autonomous drone that we’ve ever seen, in the sense that it can fly itself while tracking subjects and avoiding obstacles. But as soon as the Skydio 2 lands, it’s completely helpless, dependent on a human to pick it up, pack it into a case, and take it back home to recharge. For consumer applications, this is not a big deal. But for industry, a big part of the appeal of autonomy is being able to deliver results with a minimum of human involvement, since humans are expensive and almost always busy doing other things. Today, Skydio is announcing the Skydio 2 Dock, a (mostly) self-contained home base that a Skydio 2 drone can snuggle Continue reading Skydio’s Dock in a Box Enables Long-Term Autonomy for Drone Applications

Drones as Detectives: Surveying Crime Scenes for Evidence

When detectives and other forensics specialists arrive at a crime scene, there is a pressing need to survey the area quickly. Environmental disturbances such as wind or an incoming tide could ruin valuable evidence, and even the investigators themselves are at risk of contaminating the crime scene. Could a fleet of evidence-surveying drones be of help? Pompílio Araújo, a criminal expert for the Federal Police of Brazil, is responsible for recording crime scenes exactly as found. In his other role as a researcher at the Intelligent Vision Research Lab at Federal University of Bahia, he is trying to make his first job easier by developing drones that can—very quickly—home in on a piece of evidence and record it from multiple angles.

Skydio’s New Drone Is Smaller, Even Smarter, and (Almost) Affordable

When Skydio announced the R1 in early 2018, it was one of the most incredible drones we’d ever seen. It’s been a year and a half, and in the fast-paced world of drones, the Skydio R1 is somehow still, by a huge margin, the most intelligent and capable drone in existence, offering a level of autonomy that would be impressive even if it was a one-off research project, which it wasn’t, because you could buy one for US $2,500. The R1, though, was really not intended to be a consumer drone in the sense that it wasn’t a direct competitor to the likes of DJI, which has overwhelmingly dominated the consumer drone space since the early days of consumer drones. Rather, the R1 was meant to demonstrate exactly what Skydio was capable of, offering the chosen few who could justify paying for one a magical experience that couldn’t be found anywhere Continue reading Skydio’s New Drone Is Smaller, Even Smarter, and (Almost) Affordable

Swiss Post Suspends Drone Delivery Service After Second Crash

An emergency parachute failure raises questions about the safety of urban delivery drones For about a year, Swiss Post and Matternet have been collaborating on a drone delivery service in three different cities in Switzerland, with drones ferrying lab samples between hospitals far faster and more efficiently than is possible with conventional ground transportation. The service had made about 3,000 successful flights as of last January, but a January 25th crash into Lake Zurich put things on hold until April. A second crash in May caused Swiss Post to suspend the service indefinitely, and a recently released interim report published by the Swiss Safety Investigation Board provides some detail on what happened—and a reminder that for all the delivery drone hype, there are some basic problems that are still not totally solved.

Spring-Loaded Drone Collapses Mid-Flight to Zip Through Windows

This drone can dynamically fold and unfold its arms to pass through narrow gaps Late last year, we wrote about a foldable drone from Davide Scaramuzza’s lab at the University of Zurich that could change its shape in mid-air to squeeze through narrow gaps. That drone used servos to achieve a variety of different configurations, which made it very flexible but also imposed a penalty in complexity and weight. At ICRA in Montreal earlier this year, researchers from UC Berkeley demonstrated a new design for a foldable drone, able to shrink itself by 50 percent in less than half a second thanks to spring-loaded arms controlled by the power of the drone’s own propellers.